板式换热器不锈钢板片的腐蚀失效是介质中Cl-引起的板片触点处的缝隙腐蚀所致,不锈钢板式换热器板片防腐措施:
1、降低介质中Cl-离子含量。腈纶生产中Cl-来源于两个方面:一是原料带入;二是脱盐水带入。为了减少或避免316不锈钢的腐蚀源,应把好原料关,严格控制丙烯磺酸钠NaCl含量,并严格进出水Cl-指标。
2、确保设备钝化膜完好。钝化膜的缺陷是导致腐蚀的内因,此缺陷来源于不锈钢板片在冷加工冲压过程中可能造成的局部余应力、钝化膜破坏,以及加工及安装过程中粘附的脏物和施工标志焊渣、磕碰损坏处,因此应确保正确安装,板片钝化膜的完好。
3、板片组装后形成了多缝隙结构,如板片之间的触点、密封槽底等部位,而缝隙容易造成C1-的富集,当板片表面的污垢严重时,介质中的腐蚀元素(Cl、S等)大量附着于污垢,并在垢底缝隙处富集,容易造成触点处的缝隙腐蚀。为此,正确选用材料,正确组装,定期清垢以破坏腐蚀的生成条件和孕育期,降低介质中氯离子等有害离子的含量,都可有效防止板片触点处的缝隙腐蚀。钛是耐点蚀和耐缝隙腐蚀结构材料,在无法解决问题时可考虑使用钛。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在工作点。内旁通,道技术和不等流通截面积装配为两侧介质相差较大的工况提供了的解决方案。ARD板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,工况可按用户需要设计制造。
质量更稳定
工业化生产,整机设计、整机生产、整机测试,并严格遵循1SO9001国际质量体系,涵
盖设计控制、采购控制、生产过程控制、成品检验以及产品安全控制等各个工艺环节,
换热机组整机质量的稳定可靠
驱动器
驱动器由双向电机驱动,齿轮为金属齿轮,驱动器应有过载保护;
可机械手动操作且操作时不需要停电;
可将信号分割控制;
可正/反向选择控制;
具有阀门行程自检功能,以减少调试时间;
控制信号为标准的模拟量信号,0(2)-10V/0(4)-20mA可选;
具有阀位反馈功能,反馈信号为0/2-10V;
控制方式为模拟量控制和三点控制可选;
驱动器与阀体必需为同一。
洛阳九和热交换器
洛阳九和热交换器
01、
公司从事换热设备及相关配件的销售、安装及技术服务。
公司经营的板式换热器等各种换热设备可以满足目前国内外多种换热的场合。作为中国板式换热器优势供应商,
洛阳九和以全面的产品、的技术、优惠的价格得到了国内各行业客户的信赖与支持。
公司全体员工热忱希望和您合作。
换热机组维护:
1.尽量机房处于干燥通风状态,以免机组部件过快老化生锈腐蚀。
2.运行时,应循环水系统充满水,并定时检查各点压力、温度,以及安全阀的标定、水泵的运行情况、电流、电压,发现意外情况应及时处理。
3.在换热器效率下降时,应及时除垢,可选用工业除水垢剂GJ-4E(客户根据实际情况而定)。
4.Y型过滤器两侧压力降超过预定值时,应及时清洗滤袋。当滤袋有破损时,请及时更换。
5.机组长期不用时,应放净系统存水,并关闭所有接口阀门,并对Y型过滤器、换热器定期维护、清洗。
6.机组长时间停机后,应将温控阀阀杆及压塞处擦干并涂抹黄油防护,以免生锈或密封件氧化以及干燥粘结。
7.应定期检查控制柜,推荐两周一次,迟每月一次:
(1)检查所有接线端子,是否有松动,务必接点紧固。
(2)观察接触器动作是否正常。
(3)断开三相断路器,仅闭合两极断路器(即控制电源),观察接触器动作是否正常。
(4)在断电情况下用手捏下电缆的橡胶皮,观察是否发黏,是否老化。
(5)控制柜内灰尘应定期清除。
水水板式换热机组的特点:
1.双循环水泵:机组正常时为一泵工作,一泵备用,循环水泵自动定时切换,当工作泵发生故障时,备用泵可自动投入运行。 2、换热机组自动补水,自动定压。补水泵可全自动运行和手动控制启停,系统稳压值可根据实际自由设置和调整。二台水泵时补水泵可交替运行。
3、换热机组配备了电磁阀、安全阀二级超压保护装置,系统超压时,电磁阀先打开泄压,若电磁阀有故障,安全阀开启泄压,以确保系统压力的稳定及运行安全。
4、换热机组配备泽宇的不锈钢滤网反冲除污器,除污效果好,使用寿命长。
5、换热机组所有阀门、仪表管路均采用产品,装机配置合理,水泵运行平稳,噪音低,有效的改善机房环境。 6、换热机组配置灵活,可根据用户要科学、合理的优化配置,限度地满足客户要求。
换热机组的性能特点:
1、节能,传热系数高。
2、全不锈钢制作,使用寿命长。
3、改层流为湍流,提高了换热效率,降低了热阻。
4、换热速度快,耐高温,耐高压。
5、结构紧凑,占地面积小,重量轻,安装方便,节约土建投资。
6、设计灵活,规格,实用针对性强,节约资金。
7、应用条件广泛,适用较大的压力、温度范围和多种介质热交换。
8、维护费用低,易操作,清垢周期长,清洗方便。
9、采用纳米热膜技术,显著提高传热系数。
10、应用领域广阔,可广泛用于热电、厂矿、石油化工、城市集中供热、食品医药、能源电子、机械轻工等领域。
管壳式换热器的设计工艺流程:
1、确定管壳式换热器的流体在换热器中的流动途径;
2、确定管壳式换热器的流体在换热器中两端的温度,计算定性温度,确定在定性温度下的流体物性;
3、计算管壳式换热器的平均温度差,并根据温度差校正系数不应小于0.8的原则,确定壳程数或调整加热介质或冷却介质的终温;
4、根据管壳式换热器的两流体的温差和设计要求,确定换热器的型式;
5、依据管壳式换热器的换热流体的性质及设计经验,选取总传热系数值;
6、依据管壳式换热器的总传热速率方程,初步算出传热面积,并确定换热器的基本尺寸或按系列标准选择设备规格;
7、计算管程、壳程压降,根据初选的设备规格,计算管程及壳程的流速和压降;
8、检查计算结果是否合理且满足工艺要求。若压降不符合要求,要调整流速,再确定管程和折流挡板间距,或选择其它型号的换热器,重新计算压降直至满足要求为止;
9、核算管壳式换热器的总传热系数,并且计算管、壳程对流传热系数,确定污垢热阻,再计算总传热系数,然后与值比较确认。