流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。图示为简单的单壳程单管程换热器,简称为1-1型换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。
换热器性能
特点
1.节能,该换热器传热系数为6000-8000W/m2.0C。
2.全不锈钢制作,使用寿命长,可达20年以上。
3.改层流为湍流,提高了换热效率,降低了热阻。
4.换热速度快,耐高温(400℃),耐高压(2.5Mpa)。
5.结构紧凑,占地面积小,重量轻,安装方便,节约土建投资。
6.设计灵活,规格,实用针对性强,节约资金。
7.应用条件广泛,适用较大的压力、温度范围和多种介质热交换。
8.维护费用低,易操作,清垢周期长,清洗方便。
9.采用纳米热膜技术,显著增大传热系数。
10.应用领域广阔,可广泛用于热电、厂矿、石油化工、城市集中供热、食品医药、能源电子、机械轻工等领域。
换热器中采用节能技术不仅能提高能源利用率,减少金属材料的消耗,而且对推进石油、化工、制药等行业的节能减排工作有着积极意义。介绍了常用管壳式换热器换热管强化传热技术和壳程强化传热方法,分析了各自的原理、优缺点及推荐使用场合。
随着能源和环境危机的凸显,节能减排日益成为各国能源与环境战略制定和能源相关行业研发应用的重要考虑因素。换热器强化传热作为有效的节能措施也逐渐成为一个热点研究领域。
换热器是一种普遍使用于各行业的过程设备, 其中管壳式换热器约占换热器总量的70%,作为常用的一类换热器,特别适合于高温高压的应用场合,并且能够适合各种传热传质过程,具灵活性。管壳式换热器的强化传热分为管内和管外两方面, 其中壳侧流动与换热越来越成为这种换热器、完善的[1-2]。
1.不同换热器管束支撑方案
管壳式换热器中的折流板同时起着支撑管束和 约束壳侧流体介质的流动通道的作用。初的折流 板形式为弓形,后来又衍生出其他类型。
1. 1弓形折流板换热器
流体在弓形折流板换热器壳侧的流动是沿反复曲折通道前行的,流动方向的周期性变化可以反复以横掠的姿态冲刷管束,提高流速,增大壳侧的换热系数[3]。弓形折流板换热器壳侧的流动状况如图1所示。
由于弓型折流板结构简单,制造、安装比较容易,因而应用普遍,但也存在一些弊端,如有流动 死区,沿程压降较大,容易积垢。由于在弓形折流板窗口处管束的支撑距离是中部管束的两倍,该区域 流体在完成180度转向过程中对管束产生更多的扰动力,在较高的质量流速下易诱导换热管的振动,从而成为换热管破坏的主要原因,缩短了换热器的使用寿命[4]。
管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。
③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
④涡流热膜换热器涡流热膜换热器采用新的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热效率。高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。