管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。
③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
④涡流热膜换热器涡流热膜换热器的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热效率。高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。
换热器中采用节能技术不仅能提高能源利用率,减少金属材料的消耗,而且对推进石油、化工、制药等行业的节能减排工作有着积极意义。介绍了常用管壳式换热器换热管强化传热技术和壳程强化传热方法,分析了各自的原理、优缺点及推荐使用场合。
壳程换热管之间插入螺旋扭片,螺旋扭片的 插入可以有效地改变壳程流体的流动形式,使壳 程流体产生多股自螺旋流的复杂流动形态[3],有 效提高换热管束壁面的流体速度,实现不同壳体 半径处流体的充分混合,从而达到强化传热的目 的。本文利用FLUENT软件对这种新型纵向多 螺旋流管壳式换热器的壳程湍流流动及换热进 行了三维数值模拟,根据模拟结果并对这种利用 螺旋扭片强化换热器壳程流体换热的机理进行 了有益的探讨。
1 模拟模型
模拟采用的换热器为单管程、单壳程和螺旋扭 片结构。换热器以正方形布管,图1为螺旋扭片的 Pro/e三维立体示意图。图2为换热管与螺旋扭片 之间定位关系示意图。
由于纵向多螺旋流管壳式换热器的壳程结构比 较复杂,采用四面体网格划分,管程采用六面体网格 划分。此模型中边界类型有4种:进口、出口、管壁 和壳壁[4-5]。模拟模型的数学形式建立时,主要考虑 设置管程、壳程内流体满足控制守恒的连续性方程、 质量方程、动量方程以及能量方程等。因壳程流体 处于湍流状态,进一步设置湍流k-ε模型。相关设 置完成后,进行了迭代计算,每次迭代210次左右 时,计算收敛,进行其残差曲线的分析。
管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
①固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。
②浮头式换热器管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。
③ U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
④涡流热膜换热器涡流热膜换热器采用新的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热效率。高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。