在石化和化工制药设备的换热器系统中,管壳式换热器以其结构坚固、可靠性高、适应性强等优点在化工生产和使用中一直占主导地位,被广泛使用在精馏塔的塔顶冷凝器、冷却器和塔底再沸器等。在管壳式换热器的设计和使用中,积极考虑强化传热的新技术、新工艺,以提高能源利用率、减少金属材料的消耗,对推进石油化工制药行业的节能减排工作有着重要意义。
随着能源和环境危机的凸显,节能减排日益成为各国能源与环境战略制定和能源相关行业研发应用的重要考虑因素。换热器强化传热作为有效的节能措施也逐渐成为一个热点研究领域。
换热器是一种普遍使用于各行业的过程设备, 其中管壳式换热器约占换热器总量的70%,作为常用的一类换热器,特别适合于高温高压的应用场合,并且能够适合各种传热传质过程,具灵活性。管壳式换热器的强化传热分为管内和管外两方面, 其中壳侧流动与换热越来越成为这种换热器、完善的[1-2]。
1.不同换热器管束支撑方案
管壳式换热器中的折流板同时起着支撑管束和 约束壳侧流体介质的流动通道的作用。初的折流 板形式为弓形,后来又衍生出其他类型。
1. 1弓形折流板换热器
流体在弓形折流板换热器壳侧的流动是沿反复曲折通道前行的,流动方向的周期性变化可以反复以横掠的姿态冲刷管束,提高流速,增大壳侧的换热系数[3]。弓形折流板换热器壳侧的流动状况如图1所示。
由于弓型折流板结构简单,制造、安装比较容易,因而应用普遍,但也存在一些弊端,如有流动 死区,沿程压降较大,容易积垢。由于在弓形折流板窗口处管束的支撑距离是中部管束的两倍,该区域 流体在完成180度转向过程中对管束产生更多的扰动力,在较高的质量流速下易诱导换热管的振动,从而成为换热管破坏的主要原因,缩短了换热器的使用寿命[4]。