我国水源明显不足,水环境污染问题极为。为了更好地实现人类社会的可持续发展观,完成人与自然的和谐发展趋势,破坏水质恢复的分析和实践活动成为当今的热门话题。目前,鉴于湖长制环境污染日益严重,水质曝气作为一种投资少、效果好的项目,被广泛采用。
现阶段,我国一般 选用的曝气机设备,不能引起微纳米级细微气泡,溶氧率低,能耗高。微纳米气泡发生装置可生产直径在50|mm和数十纳米(nm)之间的细微气泡,可快速溶解在水中,进一步提高溶解氧的率。该技术作为一种新型水质曝气技术,在水环境中具有极其广阔的市场潜力。
改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
微米级曝气在日本的应用较早,不仅用于工业废水、河流治理,还用于养殖.畜牧.食品工业等行业,在河道及湖泊净化等方面的研究与应用,已有70多个研究和应用案例。2008年,Shaip公司将微纳米曝气技术与微生物技术相结合,处理一家日流量在200m3左右的污水厂,取得了良好的效果,使TN去除率达到90%以上。
我国对微纳米曝气技术的研究起步较晚,但随着其技术交流和应用的不断开放,微纳米级曝气已逐渐应用于国内一些项目,并取得了良好的治理效果。