微纳米气泡引起的羟基自由基还原性高,给饮用水消毒和液体表面清洁带来很大潜力。许多使用案例也证实了该技术的有效杀菌和成本低廉。Sumikura等24研究了活性氧微纳米气泡对大肠埃菌的消毒杀菌作用,获得了活性氧的消毒杀菌效果。微微纳米气泡产生的振波是导致 大肠埃希菌降解的主要因素。Chen等25产品开发了一套活性氧微纳米气泡发生装置,用于淋浴消毒,避免病原菌生长,应用效果明显优于传统超声波振动法。Broekman等26研究发现,微纳米气泡在高频节能超音波应用中可以有效消除附着在固体化学物质表面的细菌和藻类。Tian等27科学研究了微纳米气泡对陶氏反渗透膜积垢的清洗效果,发现回转曝气清洗效果优于空隙式。
微纳米曝气在现代农业中的分析和应用具体体现在:(1)净化浇水用粗盐,(2)清理蔬菜和水果上的残留物,(3)促进作物生长发育28。蔡硕等29发现微纳米气泡充氧灌溉技术可以降低灌溉流量、排放量和用水量,提高农田灌溉利用率,进而降低硝氮地表径流消耗。绳以健等30设计方案采用活性氧微纳米曝气和催化氧化的加工工艺,氯氰菊酯、毗虫啉、乐果农药等三种常见化肥残留的污泥负荷可达80%左右。周云鹏等31科学研究了微纳米充氧气泡农田灌溉对小青菜、青菜、油麦菜生产和产品质量的危害,发现适合水培蔬菜的充氧浓度值为10~20mg/L。
微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
除用于湖泊.河道的治理外,国内外很多学者也将微纳米曝气在其它领域进行相关研究。通过对一静态旋流微气泡浮选柱的使用条件的优化,并对含含水的废水进行了处理,结果表明,微泡悬浮柱对含油废水的去除率达到90%以上。对于生物净化作用,米歇森等网对用微生物与微纳米曝气法混合后,注入土壤间隙,以降解土壤中二甲苯。试验结果表明,微纳米粒曝气可以提高微生物的活性,经处理后二甲苯浓度基本被去除,微纳米泡在土壤中维持较长时间,菌株的作用也更加持久。Hotta等利用微米级曝气法在海洋环境中进行了海体底泥污染试验。研究结果表明,微纳米泡不仅能有效地消除底泥中的污染物,而且能增强污泥中的细菌活性,提高污泥的持续污染能力。将微泡气浮与普通气浮工艺相比较,采用微泡气浮和普通气浮工艺,对含油餐饮废水进行预处理,在相似条件下,微泡气浮技术具有较好的气浮性能和较高的去除率。可见,微纳米粒曝气在曝气技术上有一定的性,但微纳米曝气技术在实际应用中要把水体和气体混在一起才能曝气,怎样才能更好地推广微纳曝气技术,也是当前研究的热点。
曝气技术的相关科学研究在已经进行了40多年,投资小,效果好。5o曝气技术广泛应用于的水污染治理中,作为水质原点的修复技术。根据缺乏自净能力的水污染治理,曝气加氧可以修复生态系统和水质净化6o溶氧进入水质,可以氧化发臭化学物质,合理缓解或减少黑臭。水质中溶解氧水平的提高可以钝化处理污泥,抑制污泥中高锰酸盐指数和磷的释放,空气氧化或溶解表面污泥中的恢复化合物,从而在表面堆积物表面产生以兼性细菌为主导的自然环境,促进好氧细菌的繁殖,抑制厌氧发酵微生物菌种和好氧溶解水环境中的有机化合物。曝气复氧了水环境中有氧的自然环境,提高了水质中细菌的数量和活力,从而促进了微生物菌种对受损成分的摄入,减轻了环境污染负荷,有利于建立细菌和藻类相互依存管理体系7o。
微纳米曝气组成微生物菌种技术对水利枢纽堆积物的改善作用。科学研究结果表明,曝气区S3的相对性比附近非曝气区S2和S4的TP降低了11.6%和2.7%,曝气区S5的相对性比非曝气区S4的TP降低了32%。S3.S5和S6在曝气危害地区的相对性分别为23.0%.18.0%.10.3%。S3.S5和S6在曝气危害地区的相对性分别为22.4%.5.5%.3.8%。积聚物微生物菌种共检测22.113属,曝气前后对比,积聚物中有益菌变菌门成分增加26.42%,厚壁菌门成分增加5.25%,而标有水体富营养化的绿弯菌门成分减少9.51%,酸链球菌门成分减少5.82%,球菌门成分减少8.16%,其他类别成分弹性系数较低。
纳米气泡是指孔径为0.1.50微m的气泡,在10微m中称为micro-bubble,在20世界90时代,日本生物学家开始为水产养殖领域开发微纳米气泡35。1991年,Ketkar等36对沉淀气泡技术进行了科学研究,丰富多彩,提高了微纳米气泡的出现方式 ,如电解盐水、充压融化、切割等37o。
科研人员发现,由于微纳米气泡规格小的特点,表现出与一般气泡不同的多种特点,使气泡在水质中的溶解氧更,对浮颗粒的剥离有更好的实际效果,对污染源的分解力。
微纳米气泡的关键特点如下:
(I)
微纳米气泡体积比一般气泡小很多,水的浮力也小,所以上升缓慢,纳米气泡在上升过程中会继续收拢,终在水中融化消退。汪敏刚等I38对微纳米气泡为人眼所见的乳白色出现时间(关键以微米气泡为主)进行了反复准确测量求平均值的科学研究,测量数据显示微纳米气泡在水中的悬浮时间为5分钟左右。
(I)
微纳米气泡页面会吸引带负电的正离子(如OH-),产生表面正电荷的正离子层;空气负离子会吸引带正电的正离子(如H+),在表面正电荷的正离子层周围产生正电荷,这也是微纳米气泡页面的双电层结构39,如图0-2所示。双电层促进气泡之间的排斥,使气泡无法相互结合,气泡在溶液中的均匀分布40o双电层正电荷引起的电位差。Z电位差越高,吸附功能越高。