我国水源明显不足,水环境污染问题极为。为了更好地实现人类社会的可持续发展观,完成人与自然的和谐发展趋势,破坏水质恢复的分析和实践活动成为当今的热门话题。目前,鉴于湖长制环境污染日益严重,水质曝气作为一种投资少、效果好的项目,被广泛采用。
现阶段,我国一般 选用的曝气机设备,不能引起微纳米级细微气泡,溶氧率低,能耗高。微纳米气泡发生装置可生产直径在50|mm和数十纳米(nm)之间的细微气泡,可快速溶解在水中,进一步提高溶解氧的率。该技术作为一种新型水质曝气技术,在水环境中具有极其广阔的市场潜力。
微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
氧在水质中的传递是通过气体和废水中的O2浓度梯度将O2从致密气体迁移到低密度废水中,因此O2浓度梯度和接触范围确定了曝气的实际效果。在O2浓度梯度不变的标准下,气水接触总面积是决定曝气实际效果的主要因素。
微纳米气泡技术合理解决了水质中气泡接触总面积的问题。根本原因是微纳米气泡的面积可以合理扩大。例如,0.1cm的大气泡可以分散成100nm的微气泡,其面积可以扩大1万倍,从而进一步提高溶解氧的率。同时,由于气泡细小,气浮机性能,可长期停留在污水处理中,从而达到良好曝气实际效果的目的。
由于微纳米气泡发生装置的原理和气泡尺寸与基本曝气设备有很大不同,因此该设备形成的微纳米气泡具有以下特性。
水解状况:水中汽体的溶解性受压力危害大于(1),但电解质溶液的离子化水可以在融入的微纳米气泡表面产生两层电离子,并随着面积的不断减小而大幅收拢,可以抑制气泡中汽体的释放,进一步提高溶解度。
(2)超声波:微纳米气泡因能量高而开裂,具有很强的作用。
(3)通电性:微纳米气泡表面含有负电,很难将气泡融为一体,在水质中会产生非常茂密细致的气泡,不容易像基本气泡一样结合膨胀开裂。微纳米气泡的表面电位差一般为-30~-50mV,能吸收水质中含有正电荷的化学物质。利用表面正电荷对水质颗粒的吸附,可以固定和分离水质中的有机化学悬浮固体。因此,该技术在提高溶氧的同时,也具有一定的水处理实际效果。
(4)停留性:微纳米气泡在水质上升得很慢,像香烟一样弥漫在水中。比如10prn气泡以100m/s的速度升高,在水质上升高1m需要3小时,所以微纳米气泡会在水中停留很长时间。这一特点也是其融解效率相对较高的关键。这种停留的形成不仅与气泡细水的浮力降低有关,还与其电荷有关。如果选择电极进行观察,随着电级的变化,可以看到小气泡的正负极健身运动和Z型的缓慢上升。
微米级曝气在日本的应用较早,不仅用于工业废水、河流治理,还用于养殖.畜牧.食品工业等行业,在河道及湖泊净化等方面的研究与应用,已有70多个研究和应用案例。2008年,Shaip公司将微纳米曝气技术与微生物技术相结合,处理一家日流量在200m3左右的污水厂,取得了良好的效果,使TN去除率达到90%以上。
我国对微纳米曝气技术的研究起步较晚,但随着其技术交流和应用的不断开放,微纳米级曝气已逐渐应用于国内一些项目,并取得了良好的治理效果。
除用于湖泊.河道的治理外,国内外很多学者也将微纳米曝气在其它领域进行相关研究。通过对一静态旋流微气泡浮选柱的使用条件的优化,并对含含水的废水进行了处理,结果表明,微泡悬浮柱对含油废水的去除率达到90%以上。对于生物净化作用,米歇森等网对用微生物与微纳米曝气法混合后,注入土壤间隙,以降解土壤中二甲苯。试验结果表明,微纳米粒曝气可以提高微生物的活性,经处理后二甲苯浓度基本被去除,微纳米泡在土壤中维持较长时间,菌株的作用也更加持久。Hotta等利用微米级曝气法在海洋环境中进行了海体底泥污染试验。研究结果表明,微纳米泡不仅能有效地消除底泥中的污染物,而且能增强污泥中的细菌活性,提高污泥的持续污染能力。将微泡气浮与普通气浮工艺相比较,采用微泡气浮和普通气浮工艺,对含油餐饮废水进行预处理,在相似条件下,微泡气浮技术具有较好的气浮性能和较高的去除率。可见,微纳米粒曝气在曝气技术上有一定的性,但微纳米曝气技术在实际应用中要把水体和气体混在一起才能曝气,怎样才能更好地推广微纳曝气技术,也是当前研究的热点。
曝气技术的相关科学研究在已经进行了40多年,投资小,效果好。5o曝气技术广泛应用于的水污染治理中,作为水质原点的修复技术。根据缺乏自净能力的水污染治理,曝气加氧可以修复生态系统和水质净化6o溶氧进入水质,可以氧化发臭化学物质,合理缓解或减少黑臭。水质中溶解氧水平的提高可以钝化处理污泥,抑制污泥中高锰酸盐指数和磷的释放,空气氧化或溶解表面污泥中的恢复化合物,从而在表面堆积物表面产生以兼性细菌为主导的自然环境,促进好氧细菌的繁殖,抑制厌氧发酵微生物菌种和好氧溶解水环境中的有机化合物。曝气复氧了水环境中有氧的自然环境,提高了水质中细菌的数量和活力,从而促进了微生物菌种对受损成分的摄入,减轻了环境污染负荷,有利于建立细菌和藻类相互依存管理体系7o。
新开发的微纳米曝气充氧设备是指比较其他微纳米曝气充氧设备的优点。科学研究新型微纳米曝气充氧设备的功能测试,获得新型微纳米曝气充氧设备的性能参数,并与市场上曝气设备的技术指标进行比较。对新型微纳米曝气充氧设备的河段进行模拟计算,获得内部河段的工作压力、流速、相同的实际标值变化,并分析其原因,为事后的改进提供基本的理论支持点。模拟计算可以降低经济成本,节约原材料,稳定性大。利用新型微纳米曝气充氧设备和曝气盘曝气设备,对水污染控制进行实验科学研究,比较两种设备对污染物的污泥负荷,分析水质中细菌的变化。后,根据基本建设示范项目,分析示范项目中设备系统软件的建设成本,比较其他水污染处理方法的成本,确保新型微纳米曝气充氧设备的优势。后对试验探究的效果进行总结分析,对下一步的分析进行展望。新型微纳米曝气设备与SBR系统软件紧密结合仿真模拟解决水污染控制,不仅充分发挥微纳米曝气设备激光切割优化和高溶解氧优势,还具有SBR系统软件间歇曝气降低运行成本,实验效果,为曝气设备的应用和推广提供基本理论支持。
微纳米曝气组成微生物菌种技术改善水利枢纽水质。科学研究结果表明,在实施微纳米曝气的几年内,曝气区表面溶氧平均值为9.5mg/L,而非曝气区为8.7mg/L。在底层水质中,曝气区平均值为8.8mg/L,非曝气区平均值为7.8mg/Lo。2018年溶氧平均值为8.9mg/L,2019年升至9.6mg/L。水利枢纽pH值变化区域为7.04~8.61o,水质清晰度从上下游水质清晰度不到1m,再到曝气区域为1m1.5m。2018年清晰度平均值为1m,2019年清晰度平均值提高到1.1m。水利枢纽上下游非曝气区高锰酸盐指数均为1.06mg/L;曝气区二期和中下游高锰酸盐指数均为0.92mg/L;2018年曝气区一、三期高锰酸盐指数均为0.88mg/Lo,2019年降至0.94mg/L。水利枢纽上下游非曝气区总磷值为0.57mg/L,曝气区二期和中下游总磷值为0.039mg/L;曝气区一、三期总磷值为0.033mg/L。2018年总磷浓度值平均值为0.044mg/L,2019年总磷浓度值平均值降至0.042mg/Lo水利枢纽上下游非曝气区可溶活力磷平均值为0.010mg/L;曝气区二期和中下游可溶活力磷平均值为0.008mg/L;2018年曝气区一、三期可溶活力磷平均值为0.007mg/L,2019年SRP平均值为0.008mg/L。水利枢纽上下游非曝气区叶绿素a均值为8.27ugL;曝气区二期和中下游叶绿素a均值为6.17ug/L;曝气区一、三期叶绿素a均值为4.30ug/L。2018年叶绿素a总平均值为6.45ug/L,2019年总平均值降至6.04ug/L。曝气区二期藻类总产量减少率为22.1%;曝气区一、三期藻类总产量减少率为34.5%,春季藻类总产量减少率为27.1%;夏季藻类总产量减少率为31.9%;冬季藻类总产量减少率为25.9%。夏季藻类植物总产量较高,因此减少率也较高,其次是春季和冬季。藻类总产量的平均减少率为28.3%,蓝藻的平均减少率为33.9%,藻类的平均减少率为34.4%,硅藻泥的平均减少率为18.7%o微纳米曝气成分。微生物菌种技术对不同类型的藻类有一定的减少作用。2018年藻类总进化率平均为7.2x106cels/L,2019年藻类总进化率平均降至7.1*106cels/L。
还原性强
微纳米泡破裂后,由更高浓度的正离子气-水分子聚集的机械能在一瞬间释放出来,使H2O溶解形成具有强氧化性的羟基自由基(·0H)I3"]。Zhang等四在衰减系数全反射傅里叶变换红外光谱技术(ATR-IR)的基础上发现,一旦破裂,高能的纳米气泡破裂,在水中生成大量的羟基自由基(2.07V),具有很强的氧化能力(2.07V),能够氧化分解有机物,净化处理水体。
(VI)的氧对流换热。
随着微纳米泡直径的减小,气泡的比表面积继续增大,界面张力促使内部标准压力不断增大,使得大量的O2按照气-水相界面融入水相培土壤。由于气泡存在于水中的时间较长,气体与药液接触的时间越长,而且气泡堆积密度越大,促使气体接触液面的距离也随之扩大,O2的使用率因此提升"I。