改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
微米级曝气在日本的应用较早,不仅用于工业废水、河流治理,还用于养殖.畜牧.食品工业等行业,在河道及湖泊净化等方面的研究与应用,已有70多个研究和应用案例。2008年,Shaip公司将微纳米曝气技术与微生物技术相结合,处理一家日流量在200m3左右的污水厂,取得了良好的效果,使TN去除率达到90%以上。
我国对微纳米曝气技术的研究起步较晚,但随着其技术交流和应用的不断开放,微纳米级曝气已逐渐应用于国内一些项目,并取得了良好的治理效果。
用微纳米曝气法进行的植物浮床处理河道支溪水氮化试验表明,微纳米级曝气浮床技术对河道底泥进行了脱氮试验,结果表明:微纳米级曝气浮床技术对河道底泥进行了脱氮试验。通过对攻.NH4+-N去除率分别达到70.31%.63.25%o洪涛及其他利用微纳米曝气技术处理黑臭水体的研究结果,微纳米曝气技术对黑臭水体中TP.NHZ-N和COD&去除率分别达21.4%.40.3%和39.1%。我国对微纳米曝气技术的研究并不多见,研究的是微纳米粒曝气在黑臭水体的修复效果,对于微纳米曝气过程中氧传质的变化鲜见报道。
除用于湖泊.河道的治理外,国内外很多学者也将微纳米曝气在其它领域进行相关研究。通过对一静态旋流微气泡浮选柱的使用条件的优化,并对含含水的废水进行了处理,结果表明,微泡悬浮柱对含油废水的去除率达到90%以上。对于生物净化作用,米歇森等网对用微生物与微纳米曝气法混合后,注入土壤间隙,以降解土壤中二甲苯。试验结果表明,微纳米粒曝气可以提高微生物的活性,经处理后二甲苯浓度基本被去除,微纳米泡在土壤中维持较长时间,菌株的作用也更加持久。Hotta等利用微米级曝气法在海洋环境中进行了海体底泥污染试验。研究结果表明,微纳米泡不仅能有效地消除底泥中的污染物,而且能增强污泥中的细菌活性,提高污泥的持续污染能力。将微泡气浮与普通气浮工艺相比较,采用微泡气浮和普通气浮工艺,对含油餐饮废水进行预处理,在相似条件下,微泡气浮技术具有较好的气浮性能和较高的去除率。可见,微纳米粒曝气在曝气技术上有一定的性,但微纳米曝气技术在实际应用中要把水体和气体混在一起才能曝气,怎样才能更好地推广微纳曝气技术,也是当前研究的热点。
微纳米曝气组成微生物菌种技术对水利枢纽堆积物的改善作用。科学研究结果表明,曝气区S3的相对性比附近非曝气区S2和S4的TP降低了11.6%和2.7%,曝气区S5的相对性比非曝气区S4的TP降低了32%。S3.S5和S6在曝气危害地区的相对性分别为23.0%.18.0%.10.3%。S3.S5和S6在曝气危害地区的相对性分别为22.4%.5.5%.3.8%。积聚物微生物菌种共检测22.113属,曝气前后对比,积聚物中有益菌变菌门成分增加26.42%,厚壁菌门成分增加5.25%,而标有水体富营养化的绿弯菌门成分减少9.51%,酸链球菌门成分减少5.82%,球菌门成分减少8.16%,其他类别成分弹性系数较低。
微纳米曝气组成微生物菌种技术改善水利枢纽水质。科学研究结果表明,在实施微纳米曝气的几年内,曝气区表面溶氧平均值为9.5mg/L,而非曝气区为8.7mg/L。在底层水质中,曝气区平均值为8.8mg/L,非曝气区平均值为7.8mg/Lo。2018年溶氧平均值为8.9mg/L,2019年升至9.6mg/L。水利枢纽pH值变化区域为7.04~8.61o,水质清晰度从上下游水质清晰度不到1m,再到曝气区域为1m1.5m。2018年清晰度平均值为1m,2019年清晰度平均值提高到1.1m。水利枢纽上下游非曝气区高锰酸盐指数均为1.06mg/L;曝气区二期和中下游高锰酸盐指数均为0.92mg/L;2018年曝气区一、三期高锰酸盐指数均为0.88mg/Lo,2019年降至0.94mg/L。水利枢纽上下游非曝气区总磷值为0.57mg/L,曝气区二期和中下游总磷值为0.039mg/L;曝气区一、三期总磷值为0.033mg/L。2018年总磷浓度值平均值为0.044mg/L,2019年总磷浓度值平均值降至0.042mg/Lo水利枢纽上下游非曝气区可溶活力磷平均值为0.010mg/L;曝气区二期和中下游可溶活力磷平均值为0.008mg/L;2018年曝气区一、三期可溶活力磷平均值为0.007mg/L,2019年SRP平均值为0.008mg/L。水利枢纽上下游非曝气区叶绿素a均值为8.27ugL;曝气区二期和中下游叶绿素a均值为6.17ug/L;曝气区一、三期叶绿素a均值为4.30ug/L。2018年叶绿素a总平均值为6.45ug/L,2019年总平均值降至6.04ug/L。曝气区二期藻类总产量减少率为22.1%;曝气区一、三期藻类总产量减少率为34.5%,春季藻类总产量减少率为27.1%;夏季藻类总产量减少率为31.9%;冬季藻类总产量减少率为25.9%。夏季藻类植物总产量较高,因此减少率也较高,其次是春季和冬季。藻类总产量的平均减少率为28.3%,蓝藻的平均减少率为33.9%,藻类的平均减少率为34.4%,硅藻泥的平均减少率为18.7%o微纳米曝气成分。微生物菌种技术对不同类型的藻类有一定的减少作用。2018年藻类总进化率平均为7.2x106cels/L,2019年藻类总进化率平均降至7.1*106cels/L。