微纳米曝气在现代农业中的分析和应用具体体现在:(1)净化浇水用粗盐,(2)清理蔬菜和水果上的残留物,(3)促进作物生长发育28。蔡硕等29发现微纳米气泡充氧灌溉技术可以降低灌溉流量、排放量和用水量,提高农田灌溉利用率,进而降低硝氮地表径流消耗。绳以健等30设计方案采用活性氧微纳米曝气和催化氧化的加工工艺,氯氰菊酯、毗虫啉、乐果农药等三种常见化肥残留的污泥负荷可达80%左右。周云鹏等31科学研究了微纳米充氧气泡农田灌溉对小青菜、青菜、油麦菜生产和产品质量的危害,发现适合水培蔬菜的充氧浓度值为10~20mg/L。
微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
还原性强
微纳米泡破裂后,由更高浓度的正离子气-水分子聚集的机械能在一瞬间释放出来,使H2O溶解形成具有强氧化性的羟基自由基(·0H)I3"]。Zhang等四在衰减系数全反射傅里叶变换红外光谱技术(ATR-IR)的基础上发现,一旦破裂,高能的纳米气泡破裂,在水中生成大量的羟基自由基(2.07V),具有很强的氧化能力(2.07V),能够氧化分解有机物,净化处理水体。
(VI)的氧对流换热。
随着微纳米泡直径的减小,气泡的比表面积继续增大,界面张力促使内部标准压力不断增大,使得大量的O2按照气-水相界面融入水相培土壤。由于气泡存在于水中的时间较长,气体与药液接触的时间越长,而且气泡堆积密度越大,促使气体接触液面的距离也随之扩大,O2的使用率因此提升"I。