改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
微米级曝气在日本的应用较早,不仅用于工业废水、河流治理,还用于养殖.畜牧.食品工业等行业,在河道及湖泊净化等方面的研究与应用,已有70多个研究和应用案例。2008年,Shaip公司将微纳米曝气技术与微生物技术相结合,处理一家日流量在200m3左右的污水厂,取得了良好的效果,使TN去除率达到90%以上。
我国对微纳米曝气技术的研究起步较晚,但随着其技术交流和应用的不断开放,微纳米级曝气已逐渐应用于国内一些项目,并取得了良好的治理效果。
曝气技术的相关科学研究在已经进行了40多年,投资小,效果好。5o曝气技术广泛应用于的水污染治理中,作为水质原点的修复技术。根据缺乏自净能力的水污染治理,曝气加氧可以修复生态系统和水质净化6o溶氧进入水质,可以氧化发臭化学物质,合理缓解或减少黑臭。水质中溶解氧水平的提高可以钝化处理污泥,抑制污泥中高锰酸盐指数和磷的释放,空气氧化或溶解表面污泥中的恢复化合物,从而在表面堆积物表面产生以兼性细菌为主导的自然环境,促进好氧细菌的繁殖,抑制厌氧发酵微生物菌种和好氧溶解水环境中的有机化合物。曝气复氧了水环境中有氧的自然环境,提高了水质中细菌的数量和活力,从而促进了微生物菌种对受损成分的摄入,减轻了环境污染负荷,有利于建立细菌和藻类相互依存管理体系7o。
新开发的微纳米曝气充氧设备是指比较其他微纳米曝气充氧设备的优点。科学研究新型微纳米曝气充氧设备的功能测试,获得新型微纳米曝气充氧设备的性能参数,并与市场上曝气设备的技术指标进行比较。对新型微纳米曝气充氧设备的河段进行模拟计算,获得内部河段的工作压力、流速、相同的实际标值变化,并分析其原因,为事后的改进提供基本的理论支持点。模拟计算可以降低经济成本,节约原材料,稳定性大。利用新型微纳米曝气充氧设备和曝气盘曝气设备,对水污染控制进行实验科学研究,比较两种设备对污染物的污泥负荷,分析水质中细菌的变化。后,根据基本建设示范项目,分析示范项目中设备系统软件的建设成本,比较其他水污染处理方法的成本,确保新型微纳米曝气充氧设备的优势。后对试验探究的效果进行总结分析,对下一步的分析进行展望。新型微纳米曝气设备与SBR系统软件紧密结合仿真模拟解决水污染控制,不仅充分发挥微纳米曝气设备激光切割优化和高溶解氧优势,还具有SBR系统软件间歇曝气降低运行成本,实验效果,为曝气设备的应用和推广提供基本理论支持。
微纳米曝气组成微生物菌种技术实施三年后,改善了水利枢纽的各项水质指标,对碳、氮、磷的环境污染有很强的减少作用。水质总磷远低于高锰酸盐指数,促进了水氮/磷比的提高,有利于蓝藻的减少。微纳米曝气融合微生物菌种强化技术有效应用于恢复水利枢纽水体富营养化水质,本实验科学研究结果为水体富营养化水利枢纽水体改善提供参考。
采用微纳米气泡曝气技术项目进行藻类控制,项目分三期基本建设,总曝气面积14.5hm2。微纳米技术工程吨污水处理费用约为0.02元/m3,合理性优良。围隔实验期内,围隔内的温度范围为21.5。26.1。隔离试验结束时,三个微纳米曝气组的溶解氧浓度值在12.4mg/L左右,而空缺对照试验的溶解氧浓度值为8.7mg/L,与曝气组误差较大,达到3.7mg/L,显示了微纳米曝气的实际充氧效果。曝气组高锰酸盐指数的大污泥负荷来自曝气生物菌种组,达到50%,比立曝气组高19.8%。总磷和可溶活力磷的大污泥负荷来自曝气+锁磷剂组,各达70.3%和50%。曝气生物菌种组对叶绿素A的大污泥负荷为70.2%,比立曝气组增加33.5%,藻类总进化率的大污泥负荷为78.9%,比立曝气组增加13.9%,蓝藻减少率为86.8%。