微纳米曝气在现代农业中的分析和应用具体体现在:(1)净化浇水用粗盐,(2)清理蔬菜和水果上的残留物,(3)促进作物生长发育28。蔡硕等29发现微纳米气泡充氧灌溉技术可以降低灌溉流量、排放量和用水量,提高农田灌溉利用率,进而降低硝氮地表径流消耗。绳以健等30设计方案采用活性氧微纳米曝气和催化氧化的加工工艺,氯氰菊酯、毗虫啉、乐果农药等三种常见化肥残留的污泥负荷可达80%左右。周云鹏等31科学研究了微纳米充氧气泡农田灌溉对小青菜、青菜、油麦菜生产和产品质量的危害,发现适合水培蔬菜的充氧浓度值为10~20mg/L。
微纳米气泡发生装置主要由发生装置、微纳米曝气头和连接管组成。由曝气头根据循环泵充压。在离心作用下,使其内部产生负压区,气体根据进气口进入负压区,在罐体内部分为附近的液体带和核心汽体带,由高速运行的气石排气部下气体匀称切成直径5~30|^m的微纳米气泡。由于气泡微妙,不会受到水中气体溶解的危害,不会受到温度、工作压力等外部标准的限制,可长期停留在污水处理中,具有的气浮机实际效果。
改变微纳米曝气器的通气量,随空气流量的增加,氧传质系数(Km)逐渐增大。标准氧传质效率(SOTE)随曝气量的增大而降低。结果表明,水温度对KLa和SOTE均有显著影响,随温度升高,PH升高先降后升,在pH=7.2时达到小。随着NHQ的增加,曝气组比例降低,且随浊度增加而增加。SOTE值随温度的升高而增大,与微孔曝气组的趋势一致,但其值小于微纳米曝气组。与SOTE相比,微纳米曝气比SOTE对通气量的变化更为敏感。
用微纳米曝气法进行的植物浮床处理河道支溪水氮化试验表明,微纳米级曝气浮床技术对河道底泥进行了脱氮试验,结果表明:微纳米级曝气浮床技术对河道底泥进行了脱氮试验。通过对攻.NH4+-N去除率分别达到70.31%.63.25%o洪涛及其他利用微纳米曝气技术处理黑臭水体的研究结果,微纳米曝气技术对黑臭水体中TP.NHZ-N和COD&去除率分别达21.4%.40.3%和39.1%。我国对微纳米曝气技术的研究并不多见,研究的是微纳米粒曝气在黑臭水体的修复效果,对于微纳米曝气过程中氧传质的变化鲜见报道。
微纳米曝气组成微生物菌种技术实施三年后,改善了水利枢纽的各项水质指标,对碳、氮、磷的环境污染有很强的减少作用。水质总磷远低于高锰酸盐指数,促进了水氮/磷比的提高,有利于蓝藻的减少。微纳米曝气融合微生物菌种强化技术有效应用于恢复水利枢纽水体富营养化水质,本实验科学研究结果为水体富营养化水利枢纽水体改善提供参考。
微纳米曝气组成微生物菌种技术改善水利枢纽水质。科学研究结果表明,在实施微纳米曝气的几年内,曝气区表面溶氧平均值为9.5mg/L,而非曝气区为8.7mg/L。在底层水质中,曝气区平均值为8.8mg/L,非曝气区平均值为7.8mg/Lo。2018年溶氧平均值为8.9mg/L,2019年升至9.6mg/L。水利枢纽pH值变化区域为7.04~8.61o,水质清晰度从上下游水质清晰度不到1m,再到曝气区域为1m1.5m。2018年清晰度平均值为1m,2019年清晰度平均值提高到1.1m。水利枢纽上下游非曝气区高锰酸盐指数均为1.06mg/L;曝气区二期和中下游高锰酸盐指数均为0.92mg/L;2018年曝气区一、三期高锰酸盐指数均为0.88mg/Lo,2019年降至0.94mg/L。水利枢纽上下游非曝气区总磷值为0.57mg/L,曝气区二期和中下游总磷值为0.039mg/L;曝气区一、三期总磷值为0.033mg/L。2018年总磷浓度值平均值为0.044mg/L,2019年总磷浓度值平均值降至0.042mg/Lo水利枢纽上下游非曝气区可溶活力磷平均值为0.010mg/L;曝气区二期和中下游可溶活力磷平均值为0.008mg/L;2018年曝气区一、三期可溶活力磷平均值为0.007mg/L,2019年SRP平均值为0.008mg/L。水利枢纽上下游非曝气区叶绿素a均值为8.27ugL;曝气区二期和中下游叶绿素a均值为6.17ug/L;曝气区一、三期叶绿素a均值为4.30ug/L。2018年叶绿素a总平均值为6.45ug/L,2019年总平均值降至6.04ug/L。曝气区二期藻类总产量减少率为22.1%;曝气区一、三期藻类总产量减少率为34.5%,春季藻类总产量减少率为27.1%;夏季藻类总产量减少率为31.9%;冬季藻类总产量减少率为25.9%。夏季藻类植物总产量较高,因此减少率也较高,其次是春季和冬季。藻类总产量的平均减少率为28.3%,蓝藻的平均减少率为33.9%,藻类的平均减少率为34.4%,硅藻泥的平均减少率为18.7%o微纳米曝气成分。微生物菌种技术对不同类型的藻类有一定的减少作用。2018年藻类总进化率平均为7.2x106cels/L,2019年藻类总进化率平均降至7.1*106cels/L。