微纳米气泡引起的羟基自由基还原性高,给饮用水消毒和液体表面清洁带来很大潜力。许多使用案例也证实了该技术的有效杀菌和成本低廉。Sumikura等24研究了活性氧微纳米气泡对大肠埃菌的消毒杀菌作用,获得了活性氧的消毒杀菌效果。微微纳米气泡产生的振波是导致 大肠埃希菌降解的主要因素。Chen等25产品开发了一套活性氧微纳米气泡发生装置,用于淋浴消毒,避免病原菌生长,应用效果明显优于传统超声波振动法。Broekman等26研究发现,微纳米气泡在高频节能超音波应用中可以有效消除附着在固体化学物质表面的细菌和藻类。Tian等27科学研究了微纳米气泡对陶氏反渗透膜积垢的清洗效果,发现回转曝气清洗效果优于空隙式。
氧在水质中的传递是通过气体和废水中的O2浓度梯度将O2从致密气体迁移到低密度废水中,因此O2浓度梯度和接触范围确定了曝气的实际效果。在O2浓度梯度不变的标准下,气水接触总面积是决定曝气实际效果的主要因素。
微纳米气泡技术合理解决了水质中气泡接触总面积的问题。根本原因是微纳米气泡的面积可以合理扩大。例如,0.1cm的大气泡可以分散成100nm的微气泡,其面积可以扩大1万倍,从而进一步提高溶解氧的率。同时,由于气泡细小,气浮机性能,可长期停留在污水处理中,从而达到良好曝气实际效果的目的。
由于微纳米气泡发生装置的原理和气泡尺寸与基本曝气设备有很大不同,因此该设备形成的微纳米气泡具有以下特性。
水解状况:水中汽体的溶解性受压力危害大于(1),但电解质溶液的离子化水可以在融入的微纳米气泡表面产生两层电离子,并随着面积的不断减小而大幅收拢,可以抑制气泡中汽体的释放,进一步提高溶解度。
(2)超声波:微纳米气泡因能量高而开裂,具有很强的作用。
(3)通电性:微纳米气泡表面含有负电,很难将气泡融为一体,在水质中会产生非常茂密细致的气泡,不容易像基本气泡一样结合膨胀开裂。微纳米气泡的表面电位差一般为-30~-50mV,能吸收水质中含有正电荷的化学物质。利用表面正电荷对水质颗粒的吸附,可以固定和分离水质中的有机化学悬浮固体。因此,该技术在提高溶氧的同时,也具有一定的水处理实际效果。
(4)停留性:微纳米气泡在水质上升得很慢,像香烟一样弥漫在水中。比如10prn气泡以100m/s的速度升高,在水质上升高1m需要3小时,所以微纳米气泡会在水中停留很长时间。这一特点也是其融解效率相对较高的关键。这种停留的形成不仅与气泡细水的浮力降低有关,还与其电荷有关。如果选择电极进行观察,随着电级的变化,可以看到小气泡的正负极健身运动和Z型的缓慢上升。
微纳米曝气改善水体的主要作用。
溶解氧是清洁水质的主要原因之一。高溶解氧有利于溶解水环境中的各种污染源,使水质迅速净化;相反,溶解氧低,水质中的污染物溶解缓慢。微纳米曝气技术对改善水体有以下几个方面。
(1)去除有机化合物的破坏和黑臭:由于微纳米气泡停留性强,可以带来更充分的O2。在丰富多彩的好氧细菌标准下,有机化合物的环境污染指标值COD和BOD显著降低,黑臭消退。同时,去除了水质底部有机化合物溶解引起的甲烷气体、氯化氢等有害有害物质。
(2)降低水质营养盐成分:由于微纳米气泡具有较强的气浮机性、停留性和扩散性,其升果较弱。水质加氧后,可合理抑制河底绿脓杆菌有机溶解的全过程,减少水下氮和磷营养盐的释放。
(3)去除藻类蓝藻水华:微纳米曝气具有很强的复氧作用,可以改善水生生物的生活条件,进而控制藻类的生长发育。
(4)提高水绿化和清晰度:环境污染水质中的各种无机物和有机化学悬浮固体、活浮植物和死亡遗骸、大中型水生花渣、溶解生物渣是危害水绿化和透明度的关键化学物质。微纳米曝气能更合理地促进水生生物的生长发育,进而降低水土有机质,显著提高水质清晰度,改善水绿色。
减少污泥内源性环境污染:微纳米曝气充氧后,湖长制(5)底泥表面氧含量增加,好氧微生物菌种主题活动加强。根据生物排泄的全过程,促进污泥有机化学污染物的溶解,逐步完善无机物化底泥土壤层,阻隔内源性环境污染。
利用微纳米曝气技术,在广州白云湖水质改造工程中,采用微纳米曝气技术,使湖的上游进水水质得到明显改善,曝气装置对水体的溶氧改善效果良好,曝气地点下游水体的溶氧状况有很大改善,整个下游水体DO提高3Mmg/L,各水质指标均有所提高,相关研究表明,泡的大小与停留时间成正比"。范海涛“J”等研究发现,微孔曝气也可以产生较小的气泡,但在气泡上升过程中可能发生合并,使得气泡变大,从而间接降低了气泡比表面积,从而使比表面积变小,从而受到浮力的影响,使水泡更快地排出水面。减少了气泡在水中的停留时间,对气液氧传质不利。
曝气技术的相关科学研究在已经进行了40多年,投资小,效果好。5o曝气技术广泛应用于的水污染治理中,作为水质原点的修复技术。根据缺乏自净能力的水污染治理,曝气加氧可以修复生态系统和水质净化6o溶氧进入水质,可以氧化发臭化学物质,合理缓解或减少黑臭。水质中溶解氧水平的提高可以钝化处理污泥,抑制污泥中高锰酸盐指数和磷的释放,空气氧化或溶解表面污泥中的恢复化合物,从而在表面堆积物表面产生以兼性细菌为主导的自然环境,促进好氧细菌的繁殖,抑制厌氧发酵微生物菌种和好氧溶解水环境中的有机化合物。曝气复氧了水环境中有氧的自然环境,提高了水质中细菌的数量和活力,从而促进了微生物菌种对受损成分的摄入,减轻了环境污染负荷,有利于建立细菌和藻类相互依存管理体系7o。
还原性强
微纳米泡破裂后,由更高浓度的正离子气-水分子聚集的机械能在一瞬间释放出来,使H2O溶解形成具有强氧化性的羟基自由基(·0H)I3"]。Zhang等四在衰减系数全反射傅里叶变换红外光谱技术(ATR-IR)的基础上发现,一旦破裂,高能的纳米气泡破裂,在水中生成大量的羟基自由基(2.07V),具有很强的氧化能力(2.07V),能够氧化分解有机物,净化处理水体。
(VI)的氧对流换热。
随着微纳米泡直径的减小,气泡的比表面积继续增大,界面张力促使内部标准压力不断增大,使得大量的O2按照气-水相界面融入水相培土壤。由于气泡存在于水中的时间较长,气体与药液接触的时间越长,而且气泡堆积密度越大,促使气体接触液面的距离也随之扩大,O2的使用率因此提升"I。