板式换热器是由框架、传热板片组及夹紧螺栓等主要部件组成。
框架包括一个固定压紧板和一个活动压紧板,由上导杆与下导杆支承,在另一端有一支柱。压制成的波纹板片悬挂在两板之间的上导杆上,移动活动压紧板将板片组压紧,再用一组夹紧螺柱将固定压紧板和活动压紧板夹紧至一定尺寸。两种介质经固定(或活动)压紧板上法兰孔流入由波纹板片组成的各自通道,热交换后介质再由固定(或活动)压紧板上的法兰孔流出。同定压紧板、活动压紧板、支柱及导杆均为低碳钢。考虑到用户的多种使用要求,框架设计有多种型式,主要有双支撑框架式和常用的落地式等,也可根据用户的要求更改框架的型式。
传热板片是板式换热器的核心部件。波纹板片通过一次压制成型,合理的波纹设计增加了板片有效传热面积,使流体顺波纹通过时形成湍流,强化了传热过程。装配时波纹与波纹相交成大量接触抗点,提高了板片组的刚度,因此能承受较高的压力。每块板片作为一个传热面,在密封垫的作用下,板片的两侧分别有冷热介质通过,进行换热。板片上有四个分配液体的孑L,孑L及板片四周装有密封垫片,限制介质在板片组内流动,各板片形成平行的通道,流经里面的两种介质,作换热效果的方向流动,为适应多种腐蚀性较强的介质,波纹板片材料有:工业纯钛TAl,用于海水或其它腐蚀性介质;多种不锈钢,用j=淡水、饮用水、油类及其它非腐蚀性介质。
在波纹板片的密封槽上装有密封垫片,密封垫片设计成双道密封结构,并且有信号孔。当介质如从道密封泄露时,可从信号孑L泄出设备之外,便能及早发现问题加以解决,不会造成两种介质的混合。密封垫片可根据不同的流体和操作温度选用不同的胶种。
板式换热器板片材质:
*不锈钢SUS304SUS316L
净水、河川水、食物油、矿物油
*工业纯钛及钛钯合金TitaniumandPalladium
海水、盐水、盐化物
*哈氏合金HadtelloyAlloy
、盐酸、磷酸
*镍Nickel
高温高浓度苛性钠
板式换热器垫片材质:
*橡胶NBR
水、海水、矿物油、盐水 一15--1IO~C
*高温橡胶BNBR -
高温矿物油、高温水 15--140~C
*乙丙EPDM
热水、水蒸气、酸、碱 一25--150~C
*氟橡胶 Viton/FluorineRubber
强酸、强碱、矿物油、润滑脂和燃油等 一5--180~C
*氯丁橡胶NEOPRENE
酸、碱、矿物油、低分子量脂烃 一35--130~C
*硅橡胶SiliconRubber
高温和某些腐蚀性介质 一65-200℃
板式换热器设计理念:
板片带有增压的新型导流区设计是在板片导流区流速较大的地方采用多路通道增加压力,使整张板片中的流速达到均等,提高了板片的换热效率,减少了死角,改善了板片的结垢状况。
板式换热机组优势:
1、板式换热机组自动定时开关机。可以根据时间、日期、不同时段实现定时开关机控制;
2、备用循环泵及换热器自动定时切换。循环泵定时切换、循环泵故障自动跨越;主板式换热器与备用板式换热器定时切换,大限度延长系统使用寿命;
3、工频与变频自动切换。系统采集温度及压力信号,控制循环泵、补水泵的变频。可自动实现多台循环泵及多台补水泵之间变频切换,变频与工频的自动切换;
4、和智能换热机组相比,板式换热机组更简洁直观、人性化的人机界面,操作使用方便。通过配备触摸屏,该系统将具有良好的人机界面,可显示完整的系统运行状态,设备现状及各种热力参数,运行参数集中数显。可就地控制,也可与控制室联网,方便用户远程监控;
5、板式换热机组强大的远程通讯功能。即可有线也可无线上联上位机。既可实现局域网控制,也可实现无线监控。故障发生时会即时发送无线报警信号到管理员手机上,以便在时间对系统进行检修。
换热器适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:
按传热原理分类:
1、间壁式换热器间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。间壁式换热器有管壳式、套管式和其他型式的换热器。间壁式换热器是应用为广泛的换热器;
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等;
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体;
4、直接接触式换热器又被称为混合式换热器,这种换热器是两种流体直接接触,彼此混合进行换热的设备例如,冷水塔、气体冷凝器等;
5、复式换热器兼有汽水面式间接换热及水水直接混流换热两种换热方式的设备。同汽水面式间接换热相比,具有更高的换热效率;同汽水直接混合换热相比具有较高的稳定性及较低的机组噪音。
选择该种控制方案的换热机组除了具备上述控制功能以外,还具有远程通讯
功能,可选择不同的通讯方式:有线(电话拨号、ADSL、宽带通讯等)或
无线(GPS等) ,并支持广泛的通讯协议(以大网、PPP协议、TCPIP协
议等)。通过上述通讯模式,可以把换热机组一次侧和二次侧温度、压力、
流量、室外温度和室内温度、循环泵和补水泵的运行状态和运行频率,电动
调节阀开度等机组参数实时的上传到管理站,或与楼宇自控系统(BAS )进行连接,对换热机组的运行状况进行在线监测,并具有供水温度
报警、回水压力过低报警、水箱液位过低报警、供水压力超压报警、超
压自动泄压,断电自动保护和联动等功能。通过中心上位机与现场控制
器的双向通讯,管理人员可对机组控制参数进行优化设定,换热机组始
终处于运行状态,一切尽可掌控。
管壳式换热器的设计工艺流程:
1、确定管壳式换热器的流体在换热器中的流动途径;
2、确定管壳式换热器的流体在换热器中两端的温度,计算定性温度,确定在定性温度下的流体物性;
3、计算管壳式换热器的平均温度差,并根据温度差校正系数不应小于0.8的原则,确定壳程数或调整加热介质或冷却介质的终温;
4、根据管壳式换热器的两流体的温差和设计要求,确定换热器的型式;
5、依据管壳式换热器的换热流体的性质及设计经验,选取总传热系数值;
6、依据管壳式换热器的总传热速率方程,初步算出传热面积,并确定换热器的基本尺寸或按系列标准选择设备规格;
7、计算管程、壳程压降,根据初选的设备规格,计算管程及壳程的流速和压降;
8、检查计算结果是否合理且满足工艺要求。若压降不符合要求,要调整流速,再确定管程和折流挡板间距,或选择其它型号的换热器,重新计算压降直至满足要求为止;
9、核算管壳式换热器的总传热系数,并且计算管、壳程对流传热系数,确定污垢热阻,再计算总传热系数,然后与值比较确认。
管壳式换热器属于间壁式换热器,流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。其换热管内部流体通道为管程,而换热器外部流体通道为壳程,管程和壳程内的流体温度不同时,则温度高的流体将会通过换热管壁,将热量传递给温度较低的流体,进而使得温度高的流体得到降温,而温度低的流体被加热,实现换热工艺。